
 

 

 
 Abstract—A DNA computing algorithm (DNACA) with an 

electron-ion interaction potential (EIIP) decoding scheme is proposed 
to identify a class of transfer functions. The DNACA includes 
crossover, mutation, enzyme and virus operators providing a highly 
modular, flexible, and accurate self-organizing structure. Simulation 
study based on the De Jong’s test functions show its superior 
performance when compared with the improved and standard genetic 
algorithms (GAs). The algorithm is also applied to control design with 
the simplest controller through special frameshift mutation such as 
enzyme and virus. 
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I. INTRODUCTION 

ECENTLY developed DNA computing algorithms 
(DNACAs) have inspired new methods that can 

simultaneously solve the parameter and structure optimization 
problems. The DNACAs based on the concept of bimolecular 
evolution was first developed by Adleman in [1]. Maley further 
detailed this kind of algorithms in terms of chemical processes 
and computer programming [2].   

The operational features inherent in DNACAs make the 
algorithms implementable in the future DNA computers which 
are over a billion times possible to implement more 
computationally efficient than the conventional computers. The 
massively parallel nature of DNA in those computers means 
that computation may be millions or billions of times beyond 
today’s supercomputers [3-7]. 

In this paper, accuracy of the proposed DNACA with or 
without frameshift operators is verified first by numerical tests 
with the electron-ion interaction potential (EIIP) [8-10] 
decoding scheme.  

Two of the competitive applications of DNACAs are on the 
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system identification (ID) and control design. System ID is 
essential for control designs based on the process model, which 
go from PID controller [11, 12] to more sophisticated methods 
such as 2H  control [13] and is applicable to the robust control 
design [14-16]. With regard to system ID, DNA strings are 
created here to represent transfer function models in which 
codons are used to represent coefficients of the denominator 
and numerator polynomials. Using frameshift operators 
(enzyme and virus), the order and numeric values of the 
transfer function model can be refined to fit the objective of 
finding the simplest ID model. The proposed approach is 
verified by testing a group of the De Jong’s functions given in 
[17]. Verification of the simulated results shows that the 
proposed method performed well, even for the system models 
with wide dynamic responses. Application to robust control 
design is also investigated and simulated result is presented. 

II. BIOLOGICAL COMPUTATION ALGORITHMS 

A DNA strand comprises of two complimentary strings in 
which four nucleotide base: adenine (A), cytosine (C), guanine 
(G), and thymine (T)—are arranged in various combinations. 
Nucleotides are paired along with two strings. One DNA string 
can be separated from the other through chemical process. As 
the other string is a perfect compliment, for the purpose of 
computation simplicity only one string is needed to further 
operations in next generation. 

The biological computation algorithm calculates the fitness 
function and gets the best solution during evolution of 
generations in terms of DNA coding schemes. The property of 
electro-ion interaction potential (EIIP) decoding can be applied 
in biological computation process and designed to calculate the 
fitness values. The system computation processes are as 
follows.  

A. The DNA Computation Algorithms 
The design flow of the DNACA and decoding process with 

EIIP as shown in Fig.1 is described in the follows.  
Step 1: Randomly generated a group of DNA sequences. 
Step 2: Perform DNA coding scheme for each DNA 

sequence.  
Step 3: The DNA codons within the DNA sequences are 

translated to amino acids.  
Step 4: The amino acids are converted to the EIIP levels. 
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Step 5: Perform DNA computing process with crossover, 
mutation, enzyme and virus operations. 

Step 6: Calculate the fitness value (the fitness function 
may incorporate with a penalty term).  

Step 7: Store the results.  
           (Sorting and saving the best solution decoded with 

EIIP in the DNACA). 
Step 8: Repeat. 

 
Fig. 1 Flowchart of DNACA for the solution search. 

 

B. DNA-Coding scheme 
Biologists have discovered 20 amino acids encoded by 64 

codons, which are expressed in the versatile combinations of 
{A, C, T, G}. As in biological DNA coding scheme, a gene 
string for DNACAs starts with the codon ATG and ends with 
the codon TAA, TAG or TGA. 

Electro-ion interaction potential (EIIP) applied here 
generates initial population and its subsequent offsprings. In 
the method presented, each amino acid was represented by a 
specified number, which was referred to as the unique 
electron-ion interaction potential and it was irrespective of its 
position in a DNA string in [18]. Moreover, these numbers are 
essential to build a physical and mathematical model which 
interprets protein sequences information using signal analysis 
methods.  

Basically, the representation possesses three merits in 
biology: (i) measure the chemical properties of bases, (ii) 
preserve information about the properties of the bases, and (iii) 
directly relate to DNA chromosomes. The EIIP describes the 
average energy states of all valence electrons, especially amino 
acids; its value for 20 amino acids and five types EIIP wheel 
nucleotides are summarized in Table I and Fig. 2.  

 
Table I. Translation of DNA strands code, amino acid codon 

and EIIP value. 

【1】0.0057ValineVVAL     Val（6）GTT GTC GTA GTG
【2】0.0516TyrosineYTYR     Tyr（4）TAT TAC
【2】0.0548TryptophanWTRP     Trp（20）TGG
【4】0.0941ThreonineTTHR     Thr（8）ACT ACC ACA ACG
【3】0.0829SerineSSER     Ser（10）TCT TCC TCA TCG AGT AGC
【1】0.0198ProlinePPRO      Pro（7）CCT CCC CCA CCG
【4】0.0946PhenylalaineFPHE      Phe（1）TTT TTC
【3】0.0823MothionineMMET     Met（3）ATG
【2】0.0371LysineKLYS     Lys（16）AAA AAG
【0】0.0000LeucineLLEU     Leu（9）TTA TTG CTT CTC CTA CTA
【0】0.0000IsoleucineIILE       Ile（2）ATT ATC ATA
【1】0.0242HistidineHHIS       His（5）CAT CAC
【0】0.0050GlycineGGLY     Gly（13）GGT GGC GGA GGG
【3】0.0761GlutamineQGLN     Gln（14）CAA CAG
【1】0.0058GlutamicEGLU     Glu（18）GAA GAG
【3】0.0829CysteineCCYS     Cys（19）TGT TGC
【0】0.0036AsparagineNASN     Asn（15）AAT AAC
【4】0.1263AsparticDASP     Asp（17）GAT GAC
【4】0.0959ArginineRARG     Arg（11）CGT CGC CGA CGG AGA AGG
【2】0.0373AlanineAALA     Ala（12）GCT GCC GCA GCG

Electron-ion 
interaction potential 

values
Amino acidOne-letter 

codeThree-letter codeCode of amino acid
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Fig. 2 Normalized EIIP wheel of amino acids. 

 
First, consider a transfer function consisted of a gain, a 

numerator polynomial and a denominator polynomial. Each 
DNA string representing the transfer function is encoded as a 
vector in the following form: 

1 2[ ]kS S S S=
G G G G

"                (1) 

Individual DNA strings 
INDS
G

, IND 1, , k,= …  are defined as 
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where 
IN DS
G  consists of the structure information 

INFS
G  and the 

parameter information 
PARAS
G ; the structure information 

INFS
G  

represents the coding information for the gain (
PARA_GS
G ), 

denominator polynomial (
PARA_DS
G ) and numerator polynomial 

(
PARA_NS
G )  based on the combination of different numbers of 

amino acids; 
STAS  and 

STP_ sSS  with INF,  D,  NsS �  are used to 

identify lead and end codons. Subscripts, f  and s ,  are 
defined as the polynomials with the first or second-order 
polynomial. 

Before executing the evolutionary process, the lead codon 
and the combination of end codons corresponding to each DNA 
string have to be excluded while single or multiple active points 
are randomly assigned for an operation. 

Normalization is performed based on the categorization of 
EIIP. Accordingly, the decoded parameters are calculated, 
excluding lead and end codon, as follows 

( ) 1
_

1

5
 

L
i i

AA EIIP
i

r DNA M

N

−

=

⋅ −∑
                                              (2) 

where the constants r, M  and N  control the range and 
resolution of the parameters, ( )

_
i

AA EIIPDNA  is the number of the 

-thi  amino acid of 
PARAS
G , L  is the length of the corresponding 

parameters in 
PARAS
G . 

The DNACAs consist of several operators in which a 
crossover operation is used to generate a new strand that will 
retain beneficial features from the parent generation. This 
exploits current genetic potential. If the population doesn’t 
contain enough encoded information to solve a particular 
problem, none of the mixing strands can produce a satisfactory 
solution.  

The mutation operator capable is spontaneously generating 
new strands which provide a mechanism to maintain the 
population’s diversity. In addition to the crossover and 
mutation operators, there are two frameshift operators, i.e. 
enzyme and virus, which will be explained in more details 
subsequently. 

C. Crossover Operation with DNA sequences 
The crossover operation causes recombination and 

information exchange of DNA sequences in a probabilistic way. 
Two DNA sequences are chosen from the current population 
and swap partial genes with each other. The variety of 
crossover algorithms work depending on the crossover rate (

cP ) 
and the number of crossover points. Three types of crossover 
strategies have commonly been adopted [19]. 

The first one is two-point crossover operation, tpc , that 

produces an intermediate population ' ' '
1( , ..., )t t tP a aλ=  from 

the original population 
1( ,..., )t t tP a aλ=  in the -tht  generation, is 

defined as  

{ }

1 1 2 2

1 1 2
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1 2 1 2

where  ( ),  { , , , },  
and 1  , ,  indicate the crossover poin t.

k iS x x x x A G T C
Lρ ρ ρ ρ

= ∈
≤ < ≤

 

The two-point crossover operation is a process of exchanging 
DNA information. The DNA sequence is divided into three 
sub-DNA sequences by the two points and crossovered each 
other by swapping the sequences between the first and third 
sub-DNA sequences. By this method, depending on the 
crossover points, a DNA sequence can be drastically changed. 
After crossover operation, the original DNA sequences 
between the two crossover points are exchanged as illustrated 
in Fig. 3. 

 

{
{

 
Fig. 3 Example of two-point crossover operation. 

The second crossover strategy is multi-point crossover, 
mpc , 

that produces an intermediate population ' ' '
1( , ..., )t t tP a aλ=  

from the original population 
1( ,..., )t t tP a aλ= , is defined as 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING

Issue 3, Volume 2, 2008 110



 

 

{ }
'

'
( 1) ( 1)

, ( 1),
1

( 1), ,

' '
( 1) ( 1)

,    1,3, ,2 1, , 1

,  ,   

, ,  and ,

t t
i i

mpt t
i i

i k i kL
k k mp k mp

i k i k

t t t
i i k i i

a a
c i k

a a

a a
if if

a a

a a S a a

λ

ρ ρ ρ ρ

+ +

+
=

+

+ +

⎛ ⎞⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= ∀ ∈ + −⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠
⎧ ⎫⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤⎪ ⎪= < ∨ ≥⎜ ⎟ ⎜ ⎟⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎣ ⎦⎣ ⎦⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭

∈

" "

∪

t
kS∈

 

1 2 3where  ( ),  { , , , },  1 , L,   
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In this crossover strategy, more than one crossover point is 
selected in a pair of chromosomes. The crossover operation is 
performed in bit level. The process of crossover positions in 
DNA sequence is selected randomly, distinctly from each 
other. 

The third crossover strategy is uniform crossover, unc  that 
produces an intermediate population ' ' '

1( , ..., )t t tP a aλ=  from 
the population 

1( ,..., )t t tP a aλ= . A mask, a binary array with 
length L is generated, 0 1,jr≤ ≤  ( 1, 2, , )j L= "  is generated 

randomly. If the -thj  random number, jr , is the -thj  element 

in the binary array set as A(T). Otherwise, it is set to be C(G). 
The mask ma  is defined as 

( ) ( ){ }1 [A(T)],   [C(G)],   L
j j ma j mama if r if rρ ρ== ≥ ∨ <∪  

The uniform crossover is defined as 
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1 2 3where  ( ),  { , , , } k iS x x x x A G T C= ∈  

Similar to the multi-point crossover strategy, the process of 
uniform crossover is performed bit by bit in a pair of DNA 
sequences. In the uniform crossover strategy, the crossover 
positions are predefined in a mask. All DNA sequences in a 
population are crossovered at the same positions. In other 
words, for the multi-point crossover strategy, each pair of DNA 
sequence is crossovered at different points because no 
predefined mask was used. 

D. Mutation Operation with DNA sequence 
The mutation operation is to change DNA sequences in a 

probabilistic way which is determined by the mutation rate 
mP . 

Mutation injects new information into the generation that may 
be important but not contained in the initial population or lost in 
the selection process, it is helpful for escaping local optimal. 

Mutation operation capable of spontaneously generating 
new strand provides a mechanism to maintain the population 
diversity as shown in Fig. 4. The Watson-Crick 

complementarity is commonly considered in mutation 
operation, i.e. A=T;�T=A;�C G;�G C≡ ≡ .  

The operation of mutation 
pm , that produces an 

intermediate population ' ' '
1( , ..., )t t tP a aλ=  from the original 

population 
1( ,..., )t t tP a aλ= , is defined as 
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Fig. 4 Example of multi-point mutation operation. 

E. Virus Operation with DNA sequences 
From the biological viewpoint, the major cause of disease is 

usually that a virus has intruded into creatures, modifying the 
original codons of DNA strings and reproducing the infected 
strings. Through this mechanism, an inserted DNA string 
makes an incursion into its parent’s string to form a new one. 
The direct consequence of this operation is that the resulting 
DNA string gains extra information in the next generation as 
displayed in Fig. 5. 

To realize the effect, let the codons inducing virus influence 
be 

vpc  that produces an intermediate population 
' ' '

1( , ..., )t t tP a aλ=  from the original population 
1( ,..., )t t tP a aλ=  

in the -tht  generation and is defined as  
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Fig. 5 Illustrations of virus operation. 

F. Enzyme Operation with DNA sequence 
The enzyme mutation works to separate and connect two 

DNA substrings while removing an intermediate fragment. The 
newly formed codon breaks away from the doped position and 
the reacted remainder of codons are joined together to form a 
new one. The direct consequence of this operation is that the 
resulting DNA string loses some information in the next 
generation, as displayed in Fig. 6. The net effect is to help the 
reacting molecules go through chemical changes more rapidly.  

To realize the effect, let the codons eliminated by enzyme 
effect be 

epc ; the start code, 
1,( )

t
ia ρ ; the stop code,

2,( )
t
ia ρ  that 

produces an intermediate population ' ' '
1( , ..., )t t tP a aλ=  from 
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Fig. 6  Illustrations of enzyme operation. 

III. ANALYSIS METHODS 

A. Configurable ID model 
There have been traditional or advanced approaches widely 

applied to deal with the system ID problem [20-22]. We 
consider here a novel application of DNACA to tackle the 
problem.  

Consider a class of transfer functions modeled as follows 

( )
2
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1 1

2
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1 1
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where 2  and 2= + = +� �n n n d d dn n m n n m  with d nn n≥� �  assure 

the transfer function to be proper. In traditional system ID 
methodologies, the least mean square error scheme is adopted 
to construct a transfer function so that it ultimately mimics the 
dynamic behavior of the identified object. The resulting 
transfer function, however, might not possess the simplest 

structure, i.e. the one is not necessarily with the minimum 
order.  

The objective function for the current problem is defined as  

3

1
i i

i

J w J
=

= ∑   (4) 

where iw  is the weighting factor for the corresponding term: 

0
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3 IND 0
1

( ) : ( ( )) ( ( ))
tf

e E i i
i

J S PA phase P j phase P jω ω
=

= −∑
G �          (7) 

0( )P s  denotes the system to be identified, Lfω  represents the 

lowest frequency, and ( )Mag ⋅  and ( )phase ⋅  indicate, 
respectively, the magnitude and phase of the frequency 
response; tf  is the total sampling number over the testing 

frequency interval. Here, J1 denotes the magnitude error at the 
lowest frequency; whereas J2 and J3 calculate, respectively, the 
overall errors of the magnitude and phase over the whole 
spectrum.  

 

B. Extension to Control Design 
Consider the control system shown in Fig. 7 with its 

controller ( )EC s
�  described in the form of (3). The following 

condition is a fundamental requirement for the nominal 
closed-loop stability: 

( )Re ( ) 0,i s iλ Λ < ∀                                (8) 

where iλ  are the roots of the characteristic polynomial ( )sΛ  of 
the nominal closed-loop system. 

The condition for internal stability is ensured by 
incorporating the following constraint: 

1
( ) ( ) 1 

1 ( ) ( )
rc E

E n

W j C jg
C j G j

ω ω
ω ω

∞

<
+

�
��                                           (9) 

where ( )nG s  is the nominal plant model which could be 

obtained by using the previous ID technique; 
( ) sup ( )A j A j

ω
ω ω

∞
= ; the weighting function  ( )rcW s  works 

so that there won’t be excessive control commands, especially 
at higher frequencies.  

The conditions for robust stability and sensitivity reduction 
have been well known [5-7] and are given, respectively, as 
follows 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING

Issue 3, Volume 2, 2008 112



 

 

( ) ( ) ( )
( ) ( )2 ( )

1
rs E n

E n

W j C j G j
g

C j G j
ω ω ω

δ ω
ω ω

∞

<
+

�
��                           (10) 

3
( ) 1 ( ) 

1 ( ) ( )
rs

E n

W jg
C j G j

ω δ ω
ω ω

∞

< −
+
��                                 (11) 

where (0,1), 0,δ ω∈ ∀ ≥  is used to control relative importance 
between stability and performance. The term ( )rsW s  satisfying 

( )( ) ,Δ ≤ ∀n rsG j W jω ω ω  is the weighting function used to 

bound the multiplicative uncertainty, which possesses a 
sufficiently high gain in low frequencies to get a disturbance 
suppression property and eliminate the steady state error. The 
multiplicative uncertainty is used here for its simplification and 
direct relationship with the complementary sensitivity function. 

Control design simultaneously satisfying above constraints 
ensures 

( ) ( ) ( )
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which is a sufficient condition assuring robust performance of 
the control system simultaneously subject to plant uncertainties 
and external disturbances. 
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Fig .7 Typical closed-loop control system with uncertainties. 

 

Objective function 
The problems of control design can be viewed as requiring 

the discovery of a controller or a control strategy that takes the 
output variables or state variables of a problem as its inputs and 
produces the values of the control variable(s) as its outputs. The 
DNA programming is well suited to resolve control design 
problems where no exact solution is known and where an exact 
solution is not required [23]. 

Minimization of the following quadratic performance index 
is introduced here for the requirement of tracking accuracy: 

( ) ( )1 0

1
= ∫

T TJ e t e t dt
T

                              (12) 

where T  is chosen sufficiently large so that ( )e t  for <T t  is 
negligible. The cost formulation covering the error energy over 
the whole time horizon of interest has been used extensively 
for both deterministic inputs and statistical inputs. However,  
system designs by this criterion tend to display a rapid decrease 
in the large initial error. Thus the systems may have poor 
relative stability. To complement the weakness, the following 

objective function in time domain is defined to directly reflect 
the transient performance: 

( ) ( ) ( )2 2 2
2 1 2 31 1 1o r ssJ M T Eε ε ε= − + − + −                          (13) 

where the weighting factors 0iε ≥  with 3

1
1i

i
ε

=

=∑ ; 
oM  with 

0 1oM≤ ≤  being the normalized maximum overshoot; rT  with 

0 1rT≤ ≤  being the normalized rise time; ssE  with 0 1ssE≤ ≤  

being the normalized steady-state error. 

DNACA-Based control design 
Although a complicated controller usually enables superior 

performance, a simpler structure with acceptable performance 
is more practically desirable. Therefore, objective functions 
considered should contain not only system performance indices 
but also structure information of the controller. 

The fitness function for the current problem is defined as 
( ) ( ) ( )f F p′⋅ = ⋅ ⋅                              (14) 

where ( )F ′ ⋅  is the unconstrained fitness term converted from 
the following objective function: 
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and g is the generation number, β  represents the desired 
emphasis on controller’s complexity, the penalty term ( )p ⋅  is 

defined as 
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and ( ) ( ){ }max 0, , 1,2,3i i ib g b iΔ ⋅ = ⋅ − =  with 1 1b = , 2b δ=  

and 3 1b δ= − , pε  is a small positive constant. 

The linear ranking approach can be used to convert allJ  to 

F′ . The formulation of (15) places a heavier weight on the 
control structure selection during the early generations, the 
weight shifts gradually to the parameters selection emphasizing 
on the system performance improvement. Balance between the 
two factors with the generation of evolution could be modified 
by appropriately adjusting the constant ς . 
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IV. NUMERICAL STUDY 

To examine applicability and efficiency of the proposed 
DNACA, the following De Jong’s test functions are 
considered: 

3
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D x x
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= − ≤ ≤∑                                          (19) 

This is a  simple 3-dimensional parabola with a spherical 
constant-cost contour. 

2 2 2
2 2 1 1100( ) ( 1) ,  2.048 2.048iD x x x x= − + − − ≤ ≤   (20) 

This  is a typical test function to deal with the optimization. 
The point (1, 1) is a minimum of zero and it is very difficult to 
perceive because a deep parabolic valley is along with the 
relation  2

2 1x x= .  

3
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This is a continuous, convex, unimodal, and 3-dimentional 
quadric which function with zero-mean Gaussian noise. 
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This is a multi-modal function; it has 25 local minimums lying 
approximately at the points , 1, 2  1, , 25ija i j= = " . 

3
2

5
1

[ 10cos(2 ) 10], 5.12 5.12 i i i
i

D x x xπ
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= − + − ≤ ≤∑         (23) 

This is a generalized rastrigin’s function. It possesses multiple 
local optimums that is suitable to examine performance of the 
optimization algorithms.  

The corresponding fitness functions 1
DF  for D1,2,3,5 and 

2
DF  for D4 are given, respectively, as 

1 1 ,  1, 2,3,5
1 ( )D

i

F i
D x

= =
+

; 2

4

1
(|1 | 1)DF

D
=

− +
             (24) 

For each test function, the iteration and population numbers 
are set to be 50 and 10, respectively. The probability rates of 
crossover and mutation are 0.8 and 0.2, respectively. Both of 
the probability rates of enzyme and virus are 0.4. The results 
of the solution are searched by using the proposed DNACA as 
shown in Fig. 8 and Table II. Taking 

4D  and 
5D  as the 

example, the efficiency of DNACA with/without frameshift 
operators is illustrated as in Table III. Convergence of the 
fitness values for 

4D  and 
5D  is displayed as in Fig. 9. It is seen 

that the DNACA produces not only accurate solutions, it 
simultaneously prevents the redundant candidate strings from 
being repeated in the evolutionary process. These results 
demonstrate efficiency and performance of the presented 
algorithm. 
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Fig. 8  Convergence of fitness values through DNACA. (a) 
1D ; 

(b) 
2D ; (c) 

3D ; (d) 
4D ; (e) 

5D . 
 

4D

4D
5D

5D

 
Fig. 9 Convergence of the fitness values for D4 and D5; (a,c) 
with frameshift operation; (b,d) without frameshift operation. 
 
Table II. Results of the proposed DNACA, the standard GA [24] 
and the improved GA [25, 26] for the De Jong’s function tests. 

( )1D x

( )2D x

( )3D x

( )4D x

( )5D x
 

 
Table III. Comparison of DNACA’s efficiency with/ without 

frameshift operators for D4 and D5 . 
 
Condition 

With 
frameshift 
operations 

Without 
frameshift 
operations 

With 
frameshift 
operations 

Without 
frameshift 
operations 

Function 4D  
5D  

Fitness value 1,000 0.991 1,000 0.6465 

Required 
generations 

for 
convergence  

20 50 45 45 

Length 
(codons) 8,3  6,6  1,2,2  6,6,6 

DNA string and 
decimal values 
of parameters

CATTTCTCA
GTTAAATA

TGAAGTC(-3
1.4014) 

GCACAGTC
T 

(31.6239) 

ACGGCGCC
G 

GCCCACGA
A 

(-31.5653) 
AGGGCCAA

A 
GCGCAGAT

G 
(31.3896) 

TTA(0) 
TTGGGA(0

) 
TACTGG(0) 

TTTTTTAGACC
TTATAAG 
(-0.0413) 

ACCCAGAACT
ATTGGTGG 

(-0.0282) 
TATTGGGAAG

CTGCAGCA 
(-0.0164) 

 
DNACA is then applied to identify the following system 

2 2

2 2

0 2 2

2 2

2 1.17 2 1.1291.038 1 1 1
300 0.0911 0.0911 0.7587 0.7587

( )
2 2.712 2 1.591 1 1

4.012 0.1068 0.1068 2.168 2.168

s s s s s

P s
s s s s ss

⎛ ⎞⎛ ⎞× ×⎛ ⎞+ + + + +⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠=

⎛ ⎞⎛ ⎞× ×⎛ ⎞+ + + + +⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

   (25) 

The aim is to find out a simplified transfer function to 
faithfully mimic the system behavior in the frequency domain. 
The frequency band under consideration is [10-2,103] rad/s, 
four frequency intervals are considered individually including 
[10-2, 1], [10-2, 10], [10-2, 102] and [10-2,103] (rad/s). For each 
section, the DNACA is used to optimize the structures and 
parameters of the identified transfer function. Every section 
encompasses the result obtained in the previous section as the 
basis for the optimization process.  

The parameter settings for the DNACA are set as follows: 
the population size is 70, the resolution is 15 codons, the 
maximum generation is 800, the parameter range is  [-200, 200], 
the rates of enzyme and virus are 0.4, respectively. 

After 800 generations of evolution (i.e. every interval 
performed 200 generations of evolution), the final results are 
shown in Fig.10. For the first frequency interval, the DNACA 
generates a transfer function approximating the low frequency 
behavior of 0 ( )P s . As it is displayed in Fig. 10(a), there 

exhibits a slight discrimination in the Bode magnitude and the 
phase plots of the two systems. Clearly, the parameters and 
structure of the system model identified at this stage need to be 
refined. Moving further to the subsequent stages of evolution 
with the result obtained in the first stage as the initial model, 
the ID error attenuates with the increasing frequency interval 
of interest. The result reaches its optima over the whole 
frequency range after the fourth stage of ID, see Figs. 
10(b)-10(d). The summarized details are shown in Table IV.  
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Fig. 10. Results of four step system ID; the real line indicates 

the original system response, the dashed line shows the 
identified system response within the following frequency 

intervals: (a) [10-2, 1]; (b) [10-2, 10]; (c) [10-2, 102]; (d) 
[10-2,103](rad/s). 

 
Table IV. Results of ID in four frequency intervals 

                                   

Performance indices 
 

Estimation Model 
Max. ID error 

(a) 

Order of 
num/den 

polynomials (b)
exp–((a)x0.1(b))

210 ~1 

1.97( 5.67)( 9.40)( 18.4) ( 109.1)( 193.6)( 0.53)
( 1.32)( 52.81) ( 54.45)( 62.29)( 69.79)

s s s s s s
s s s s s s −
+ + + + + +

⋅
+ + + + +

2.8030 db 
(at 0.06 rad/sec) 12 0.0346

210 ~10 

0.2332( 0.5593)( 192.1)
( 2.199)( 7.964)

s s
s s s −

+ +
+ +

 2.8536 db 
(at 0.01 
rad/sec) 

5 0.2401

2 210 ~10  

0.2332( 0.5593)( 192.1)
( 2.199)( 7.964)

s s
s s s −

+ +
+ +

 2.8536 db 
(at 0.01 
rad/sec) 

5 0.2401

2 310 ~10  

0.1355( 0.414)( 189.8)( 194.8)
( 6.236)( 3.081)( 103.1)

s s s
s s s s −

+ + +
+ + +

 
1.7315 db 
(at 260.01 

rad/sec) 
7 0.2975

 
Next, control design based on DNACA is examined. The 

performance index of the objective function 2J  is ignored in 

the following case.  
Using Matlab to solve for the robust control problem 

defined by (10) gives  
-7 4 6 3 6 2 6 9

5 4 3 2

4.973 10 1.044 10 5.071 10 9.942 10 7.683 10
2.234 10.49 21.38 2.768 0.1801optH

s s s sC
s s s s s

− − − −× + × + × + × − ×
=

+ + + + +

�  

 

and the resulting 2 0.02g = . 

For the proposed DNACA, the population size is set as 50, 
crossover rate is 0.8, mutation rate is 0.2, the weighting factor 

iε  is 0.2, both the enzyme and virus rates are 0.4, the 
maximum and minimum bounds of the information fragments 
are [1,  10] . A controller is obtained after 20 generations of 
evolution as 

( )3.9802 6.503
( )

17.23E
s

C s
s

+
=

+

�  

The final result for the robust stability index is 2 0.03g = . 

Convergent behavior of the controller’s structure and 
2g  are 

shown in Figs. 10 and 11. Although this value is slightly worse 
than the one obtained through using Matlab, the controller with 
lower order, while sacrificing performance a bit, is of more 
practical. 

 

 
Fig. 10. Changes of the summation of denominator and 

numerator order. 
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Fig. 11. Convergence of the H∞

 norm. 

V. CONCLUSIONS 
A DNA computing algorithm with new coding method based 

on EIIP of DNA codons is introduced. The EIIP is used instead 
of the traditional binary coding system. Capability for seeking 
the solutions of the multiple variable functions is confirmed by 
considering a class of De Jong’s functions as the testing object. 
The proposed DNACA has also been successfully extended to 
deal with the system ID and control design problem. Numerical 
experiments confirm its excellence for these problems. The 
algorithm’s multiple mutation mechanism allows it to simplify 
the model structure simultaneously while generating the 
optimal parameter set during the evolution process.  

REFERENCES 
[1] L. M. Adleman, Molecular computation of solutions to combinational 

problems, Science, vol. 266, pp. 1021-1024, 1994. 
[2] C. C. Maley, DNA computation theory, practice, and prospects, 

Evolutionary Computation, vol. 6, pp. 201-229, 1998. 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING

Issue 3, Volume 2, 2008 116



 

 

[3] N. Forbes, Imitation of Life: How Biology is Inspiring Computing, MIT 
Press, Cambridge, 2004. 

[4] C. C. Maley, DNA Computation theory, practice, and prospects. 
Evolutionary Computation, vol. 6, pp. 201-229, 1998. 

[5] Y. Tsuboi, Z. Ibrahim, and O. Ono, DNA computing approach to 
knowledge representation. Int. J. Hybr. Intell. Syst., vol. 2, pp.1-12, 2005. 

[6] X. Yao, Y. Liu, and G. Lin, Evolutionary programming made faster. IEEE 
Tran. Evo. Comp., vol. 3, pp. 82-102, 1999. 

[7] J. Chen, E. Antipov, B. Lemieux, W. Cedeno, and D. H. Wood, DNA 
computing implementing genetic algorithms, Proc. DIMACS Workshop 
on Evolution as Computation, Princeton, pp. 39-49, 1999. 

[8] V. Veljkovic, N. Veljkovic, J. A. Esté, A. Hüther, and U. Dietrich, 
Application of the EIIP/ISM bioinformatics concept in development of 
new drugs, Cur.  Med. Chem., vol. 14, no. 4, pp.441-53, 2007. 

[9] C. Tintori, F. Manetti, N. Veljkovic, V. Perovic, J. Vercammen, S. Hayes, 
S. Massa, M. Witvrouw, Z. Debyser, V. Veljkovic,and M. Botta, Novel 
virtual screening protocol based on the combined use of molecular 
modeling and electron-ion interaction potential techniques to design 
HIV-1 integrase inhibitors, J. Chem. Inf.  Model, vol. 5, pp.261-265, 2007. 

[10] S. Bumble, The Orchestral Analog of Molecular Biology, Philadelphia 
College, USA, 2008. 

[11] K. J. Astrom and B. Wittenmark, Adaptive Control, Addison-Wesley, 
1995. 

[12] K. J. Astrom and T. Hagglund, PID Controllers, Instrument Society of 
America, 1995. 

[13] M. J. Grimble, Robust Industrial Control: Optimal Design Approach for 
Polynomial Systems, Prentice Hall, 1994. 

[14] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control, John 
Wiley ＆ Sons, Inc, 2003. 

[15] K. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control, 
Prentice Hall, 1996. 

[16] G. Luis, J. L. Manuel, and J. Lorenzo, Hardware/Software environment 
for process ID, robust controller design and hard real time implementation, 
Proc. WSEAS International Conference on Telecommunications and 
Informatics, pp. 503-508, Istanbul, 2006. 

[17] D. Jong, K. A., An Analysis of the Behavior of a Class of Genetic Adaptive 
Systems, University of Michigan, Ann Arbor, MI, 1975. 

[18] I. Cosic, V. Vojisavljevic, and M. Pavlovic, The relationship of the 
resonant recognition model to effects of low-intensity light on cell growth, 
Int. J. Radiat. Biol, vol. 56, pp.179-191, 1989. 

[19] H. Adeli and S. L. Hung, Machine Learning Neural Networks, Genetic 
Algorithms and Fuzzy System, John Wiley ＆ Sons, Inc, 1995. 

[20] E. Altamiranda, R. Calderon, and E. C. Morles, An evolutionary 
adaptation strategy for dynamic systems ID, WSEAS Trans. Syst. Contr., 
vol. 2, pp. 261-266, 2007.  

[21] A. H. Mazinan and N. Sadati, Multiple modeling and fuzzy predictive 
control of a tubular heat exchanger system, WSEAS Trans. Syst. Contr., 
vol. 3, pp. 249-258, 2008. 

[22] H. Ghorbani, A. Ghaffari, and M.  Rahnama, Constrained model 
predictive control implementation for a heavy-duty gas turbine power 
plant, WSEAS Trans. Syst. Contr., vol. 3, pp. 507-516, 2008. 

[23] C. Rentea, Neuro-controller design using genetic optimized pole 
placement method, Proc. WSEAS International Conference on Automatic 
Control, Modeling and Simulation, pp. 319-323, Prague, 2005. 

[24] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine 
Learning, Kluwer Academic Publishers, Boston, MA, 1989. 

[25] H. F. L. Frank, H. K. Lam, S. H. Ling, and K. S. T. Peter, Tuning of the 
structure and parameters of a neural network using an improved genetic 
algorithm, IEEE Trans. Neural Networks, vol. 14, pp.79-88., 2003. 

[26] Y. Hanaki, T. Hashiyama, and S. Okuma, Accelerated evolutionary 
computation using fitness estimation, Proc. IEEE International 
Conference on Systems, pp. 643-648, 1999. 

Ching-Huei Huang was born in Zhanghua, Taiwan, ROC, in 1978. He 
received the B.S. degree in Department of  Mechanical Engineering of Chung 
Cheng Institute of Technology, Taoyuan, Taiwan, ROC, in 2000. He received  
the M.S. degree in 2006, and he is currently working toward the Ph. D degree in 
the Department of Electrical Engineering at National Chung Hsing University, 
Taichung, Taiwan, ROC. His research interests are in evolutionary algorithms, 
optimal control, and robust control. 
 

Chun-Liang Lin was born in Tainan, Taiwan, ROC, in 1958. He received the 
Ph.D. degree in aeronautical and astronautical engineering from the National 
Cheng Kung University, Tainan, Taiwan, ROC, in 1991. He was an Associate 
Professor and Professor in the Department of Automatic Control Engineering at 
Feng Chia University, Taichung, Taiwan, ROC, from 1995 to 2003. He is 
currently a Distinguished Professor in the Department of Electrical Engineering 
at National Chung Hsing University, Taichung, Taiwan, ROC. His research 
interests include guidance and control, intelligent control, and robust control. 
Dr. Lin received the Distinguished Research Award from National Science 
Council of Taiwan, ROC, in 2000 and 2003.  

Horn-Yong Jan was born in Taoyuan, Taiwan, ROC, in 1978. He received the 
M.S. degree in automatic control engineering from Feng Chia University, 
Taichung, Taiwan, ROC, in 2003. He received his Ph.D degree from Institute of 
Electrical and Communications Engineering, Feng Chia University, Taichung, 
Taiwan, ROC, in 2007. His research interests are in bioinformatics, 
evolutionary algorithms, and motor control. 
 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING

Issue 3, Volume 2, 2008 117


	bio-17
	I. INTRODUCTION
	II. Methodology
	A. Current Source Measurement Circuit
	B. Curve Fitting Procedure
	C. The Measurement Procedure
	D. The Electrodes
	E. The Subjects

	III. Results
	A. Validation of Fitting Procedure
	B. Results for Skin-Electrode Measurement
	are the minimum and maximum values obtained for each individual parameter across all the measurements.
	C. Results for Current Levels other than 1μA
	D. Results for Different Electrode Settling Times

	IV. Discussion
	V. Conclusion

	bio-24
	I. INTRODUCTION
	II. Different Species Classifier
	A. Neural Network
	B. Euclidean Distance

	III. Protein Classification 
	IV. Protein 3D Structure Prediction
	A. Neural Network
	B. Hidden Markov Model
	 

	V. Protein Secondary Structure Prediction
	 
	 
	VI. Conclusion

	bio-25



