
 

 

  

Abstract— The proposed algorithm describes a novel wavelet 

transform based technique for extracting the features of arterial blood 

pressure (ABP) waveform. ABP waveform is rich in pathological 

information such as heart rate, systolic, mean and diastolic pressure 

thereby achieved an important aspect in cardiology. The multi-scale 

feature of wavelet transform enables systolic peaks to be detected 

from noise, base line drift, artifacts, irregular pressure waveform and 

arrhythmias. The first step in extracting ABP features starts from 

accurate detection of systolic peaks from ABP waveform. The 

algorithm is developed on the signals from MGH/MF waveform 

database, fantasia database, MIT-BIH Polysmographic database and 

CSL database. The wavelets used for waveform delineation are 

symmetric (sym4) and Daubechies (db4). The technique involves 

decomposition of ABP signal up to nine levels by selected wavelet. 

The algorithm does not require any preprocessing before 

implementing the detection process. Relevant detail coefficient is 

selected based on energy, frequency and cross-correlation analysis of 

detail coefficients at each scale. Finally, selected detail coefficients 

undergo window based amplitude and interval thresholding for valid 

maxima detection termed as systolic peaks. Further, average 

coefficient obtained at first level is utilized for extracting other 

features such as onsets, dicrotic notches and dicrotic peaks taking 

systolic peaks positions as reference.  

 

Keywords—Arterial blood pressure signal, wavelet transform, 

window based thresholding 

I. INTRODUCTION 

LOOD  pressure is the primary indicator of  the health of 

the cardiovascular system of the body. ABP waveform 

depicts the cardiac function of contraction and relaxation. The 

systolic pressure indicates the contraction activity of heart 

whereas diastolic pressure specifies the relaxation behaviour of 

heart. ABP waveform comprises of systolic peak, diastolic 

onset, dicrotic notch and a second smaller peak termed as 

dicrotic peak. The appearance of dicrotic notch in ABP 

waveform is due to closing of aortic valve. Dicrotic peak in 

ABP waveform is the reflected impulse arising due to closing 

of aortic valve. Like electrocardiogram (ECG), ABP waveform 

is also rich in pathological information about cardiovascular  
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function. Blood pressure waveform analysis has been well 

recognized in cardiac physiology for the assessment of 

properties of arterial vessel wall [1], cardiac output monitoring 

[2], estimation of pressure pulse index [3] and cardiac 

arrhythmia detection [4]. Thereby it is well assumed that 

analysis of arterial blood pressure waveform can provide better 

insight of heart in cardiac physiology. Moreover, mathematical 

modeling of non-invasive ABP waveform has been used to 

estimate various cardiac parameters such as cardiac output, 

arterial compliance and peripheral resistance [5-8]. In certain 

conditions ECG signals may be excessively noisy or ECG 

acquisition may not be possible due to surgical dressing of 

patients. The noise on pressure signal is mechanical in nature 

whereas electrical noise interferes more in ECG. Therefore, 

analysis of ABP waveform can be used to estimate the cardiac 

health at certain stage when ECG waveform is not available. In 

some cases, parallel analysis of ABP waveform along with 

ECG has resulted in reducing false alarms to a certain extent 

for critical arrhythmias detection [9]. Ramaswamy etal [4] 

suggested that combination of ABP waveform along with ECG 

signal gave better results for the detection of ectopic beats than 

ECG signals only. Most of the algorithms on ABP signal are 

developed on proprietary datasets from selected patients and 

lack the robustness of modern ECG algorithms. Most of the 

algorithms require preprocessing and decision logic to detect 

the peaks. These methods are based on continuous 

independent assessment of refractory period (RP), analysis of 

signal by means of producing two moving averages [10], 

template matching [11], rank filter and decision logic [12], 

windowed and weighted Slope Sum Function (SSF) [13], peak 

and trough detection methods [4], heart rate, amplitude and 

interbeat intervals [14] and combinatorial analysis of ABP 

waveforms and their derivatives [15]. 

 Algorithm developed by M. Aboy [14] includes peak 

detection of two ABP signals from CSL database. The 

algorithm utilizes a filter bank with variable cutoff frequencies, 

spectral estimates of the heart rate, rank-order nonlinear filters, 

and decision logic. The algorithm developed by Navakatikyan 

etal [10] is based on the continuous independent assessment of 

the refractory period (RP). Li etal [15] proposed an automatic 

delineator for the detection of fudicial points of arterial blood 

pressure waveforms, namely their onsets, systolic peaks and 

dicrotic notches. It firstly seeks the pairs of inflection and 

zero-crossing points, and then utilizes combinatorial amplitude 

and interval criteria to select the onset and systolic peak. The 

Wavelet Transform Based Arterial Blood 

Pressure Waveform Delineator 

Awadhesh Pachauri and Manabendra Bhuyan 

B 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING

Issue 1, Volume 6, 2012 15



 

 

delineator is based on the combinatorial analysis of arterial 

blood pressure waveforms and their derivatives. 

The researchers have paid major attention on the either 

systolic peaks [14], the onsets [11, 13], or dicrotic notches 

only [16]. There are only few algorithms dedicated to the full 

characterization of ABP waveforms but these algorithms are 

limited to the detection of systolic peak, onsets and dicrotic 

notch only and dicrotic peak is not included [15]. However, 

detection of all four similar components has been shown by M 

Aboy etal on ICP signals [12]. Secondly, most of the 

developed algorithms merely accounted for physiological 

diversities [14]. Most of the recorded ABP signals suffer from 

instrumental unreliability and measuring inconsistency.  In the 

third aspect, their validation and performance evaluation is 

based on their proprietary datasets. In particular, it is difficult 

to evaluate those systems and algorithms by their proprietary 

datasets [11, 16]. It is therefore essential to develop an 

algorithm that includes full characterization of ABP waveform, 

developed on open databases, includes performance, generality 

and robust against physiological interferences. 

We suggest a wavelet transform based technique for full 

characterization of ABP waveform that is robust to 

physiological interferences and varying signal amplitude, does 

not require any preprocessing of signals, developed and 

validated on open access MGH/MF waveform database [17], 

Fantasia database [18], MIT-BIH polysmographic database 

[19] and CSL database [20]. Moreover selection of detail 

coefficient after wavelet decomposition has been justified by 

energy, frequency and cross-correlation analysis of detail 

coefficients. Further application of window based threshold 

overcomes the problem of peaks missing due to large 

amplitude variations in the signal at any particular instant. The 

developed algorithm is applicable to any signal length however 

implementation of the algorithm is shown on first minute 

segment of Fantasia database, polysmographic database and 

selected segment of MGH/MF database and CSL database for 

validation purpose. 

II. MATERIALS 

A. Discrete Wavelet Transform 

Wavelets have been used for the illustration and analysis of 

many physiologic signals such as ECG and ABP signals 

because of their compact support. These physiologic signals 

can be reasonably characterized as isolated pulses or as 

sequences of pulses. Wavelet transform of a signal results in 

the concentration of signal energy in a relatively small number 

of coefficients that makes wavelet-based techniques potentially 

powerful tool for signal processing algorithms [21]. Noise 

generally encountered in the clinical environment is 

automatically eliminated due to inherent characteristics of 

wavelet technique. 

A dyadic wavelet transform is implemented using the set of 

highpass and lowpass filters that are derived from coefficient 

wavelet referred as mother wavelet. These filters are called 

analytical filters. Detail signal and average signal are the 

outputs of highpass and lowpass filters respectively. These 

generated signals consist of small scale and bigger scale 

information of the original signal. The lowpass filter 

coefficient undergoes subsampling to generate another new 

detail signal and average signal. Thus the dyadic discrete 

wavelet transform is the composition of dilated and translated 

form of mother wavelet. This process of decomposition of the 

signal may be continued until the average signal reaches the 

length of a single sample or a length that is not applicable for 

further application of the analysis filter pair [22].  

The wavelet transform of a signal x(t) is given by 
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smoothing function [23]. It is evident from the above equation 

that the wavelet transform at scale ‘a’ is proportional to the 

derivative of the filtered signal with a smoothing impulse 

response at scale ‘a’. Hence zero crossings of wavelet 

transform at different scales will result in local maxima or 

minima and maximum slopes in the filtered signal will occur at 

maximum absolute values of wavelet transform [24]. 

Every decomposition results in decreasing the time 

resolution by a factor of 2 whereas the frequency resolution is 

doubled. Perfect reconstruction of the signal is possible only 

with the ideal half band filters such as Daubechies set of 

wavelets. For reconstruction purpose, the decomposition 

process is followed in reverse order. The wavelet coefficients 

obtained at each level are upsampled by two, and passed 

through synthesis filters (high pass and low pass) and are 

added. The analysis and synthesis filters are identical to each 

other, except for a time reversal. Therefore, the signal 

reconstruction is referred as the inverse DWT [25].  

B. Validation Database 

The ABP signals required for the analysis are acquired from 

openly available MGH/MF waveform database [17], Fantasia 

database [18], MIT-BIH polysmographic database [19] and 

CSL database [20].  MGH/MF waveform database is the 

collection of recordings from 250 patients. The signals in the 

database are sampled at 360 samples/second. Each record 

consists of .dat file, .hea file and .ari file. Header file consists 

of information regarding the types of signals and type of leads 

in case of ECG signal, sampling interval, sampling frequency, 

duration of the signal and units. It comprises of the 

information to convert the recorded signals from raw units to 

physical units. The ari file consists of ECG annotations 

whereas dat file comprise of 8 signals. 

Details of the record mgh007 of MGH database are given in 

table I. The segments of ABP signal when both ECG and ABP 

signals are available are considered for the analysis.  
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Fig 1. Block Diagram of Peak Detection Algorithm 

 

TABLE I. DESCRIPTION  OF RECORD MGH007 OF 

MGH/MF WAVEFORM DATABASE 

Record Signal Gain Base Units 

ECG  lead I 1341 242 mV 

ECG  lead II 1382 -618 mV 

ECG  lead V 1295 -452 mV 

ABP 12.17 -1218 mmHg 

PAP 19.26 -1016 mmHg 

CVP 19.04 -1007 mmHg 

Resp. Imp. 1000 0 mV 

Mgh007 

CO2 1000 0 mV 

 

Fantasia and MIT-BIH polysmographic database signals are 

available on physionet. Both these database have ABP signal 

along with synchronously sampled ECG recordings. Signals in 

both the database are sampled at 250 Hz. 

CSL database consists of two signals - abp1 and abp2 with 

approved annotations [20]. The available blood pressure 

signals are acquired from Pediatric Intensive Care Unit (PICU) 

at Deornbecher’s Children’s Hospital, Oregon Health and 

Science University. Signal acquisition was done by the data 

acquisition systems of Complex Systems Laboratory. The 

signals are sampled at 125 Hz. Manual annotation of both the 

records was performed by one expert by dividing each record 

in to non-overlapping segments each of one minute duration. 

The expert visually classified each segment as ‘normal’, 

corrupted or absent based on instructions for classifying 

segments proposed by Advancement of Medical 

Instrumentation (AAMI) [26].  

III. DETECTION PROCEDURE 

The signals from CSL database are readable by Matlab 

directly whereas the signals from MGH/MF waveform 

database, Fantasia and polysmographic database are not 

readable. These signals are converted into .mat files before 

implementing the algorithm. In MGH/MF database, the 

extracted .mat file comprises of 8 signals as mentioned in  

table 1. The extracted signals are then separated to read each 

signal individually. Then the signals are converted from raw 

units to physical units. Finally, the samples of ABP and ECG 

II for the duration when both signals are available are 

considered for analysis. The detection process is performed on 

ABP signal of record mgh007 of MGH/MF database and abp1 

signal of CSL database and completed in the following steps. 

A. Peak Detection 

ABP signal under test undergoes wavelet analysis by the 

selected wavelet. The relevant detail coefficients are selected 

from wavelet decomposition structure for maxima detection. 

The selected relevant maxima undergoes window based 

amplitude thresholding and interval thresholding to detect the 

ABP peaks. The block diagram of peak detection algorithm is 

shown in figure 1.  

a) Wavelet Selection 

There is no universal method suggested for selecting a 

particular wavelet. The choice of wavelet depends upon type 

of application. Generally, a wavelet similar in shape to the 

signal being analyzed is considered suitable for the  

 

 

 

 

 

 

 

 

 

 

Fig2.  Wavelet function (ψ) of (a) symmetric (sym4)  

wavelet and (b) daubechies (db4) wavelet 
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Fig 3. Wavelet decompositio structure of mgh001 using 

db4 wavelet 

analysis [27]. There are several wavelet families like Harr, 

Daubechies, Biorthogonal, Coiflets, Symlets, Morlet, Mexican 

Hat, Meyer etc. and several other Real and Complex wavelets. 

However, Symlets (sym4) and Daubechies (db4) family of 

wavelets have been found to give details more accurately than 

others. Wavelet function (ψ) of sym4 and db4 wavelets are 

shown in figure 2(a) & 2(b) respectively. 

b) Wavelet Analysis.  

The selected signal under test by is decomposed up to the 

desired level depending upon dominant frequency components 

in the signal. The maximum number of decomposition levels 

depends upon the total number of samples present in the 

signal. The relationship can be expressed as- 

          Nn =2  

  Where, n = total number of levels of decomposition,              

N = total number of samples in the signal to be expressed as 

power of 2 for full decomposition of the signal. The ABP 

signal under test is decomposed up to 9 levels using db4 

wavelet is shown in figure 3. 

c) Selection of Detail Coefficient  

The choice of selecting the required detail coefficients from 

the wavelet decomposition structure is dependent on the fact 

that the required information for feature extraction of signal is 

available in the detail coefficients of that signal. Therefore, the 

detail coefficient is selected on the basis of three types of 

analysis as illustrated below – 

i. Energy Analysis. Maximum energy of an ABP signal is 

available in its higher amplitude and wider systolic complex. 

Other segments of the signal such as onset and dicrotic notch 

possess lower energy. The energy analysis of all decomposed 

details of ABP signal is performed. It is observed that d7 

signal possesses highest energy in record mgh007 and d6 has 

maximum energy in abp1 signal of CSL database as shown in 

table II. It is observed from table II that the sum of energy of 

all detail coefficients and remaining one average coefficient is 

equal to the energy of ABP signal under test. Therefore, this 

energy analysis of decomposition structure proves the energy 

conservation principle of wavelet transform. It means that 

original signal can be faithfully reproduced from the 

TABLE II. ENERGY CONTENTS OF DETAIL AND AVERAGE 

COEFFICIENTS 

 

decomposed components and the information in the original 

signal is distributed at different scales but remain preserved 

during decomposition. 

ii. Frequency Analysis Another justification of selecting d7 

for mgh007 and d6 for abp1 is its available frequency 

components correlated with that of ABP signal. In pressure 

signals, most of the signal power is in the frequency range of 

0.7-3.5 Hz in humans [14]. Therefore, the Fourier analysis of 

ABP signal and all its decomposed detail signals is computed 

as shown in figure 4. From figure 4, it is observed that 

required frequency components lie in the in the range d6 & d7 

for ABP signal of mgh007. Also it is also observed that the  

 

 

 

 

 

Fig 4. Frequency Analysis of detail coefficients of mgh007 

signal using db4 wavelet 

 

 

Signal Detail 

Coefficients 

Energy 

contents 

Using sym4 

Energy 

contents 

Using db4 

d1 0.0000 0.0000 

d2 0.0001 0.0001 

d3 0.0025 0.0023 

d4 0.0405 0.0377 

d5 0.2521 0.2505 

d6 1.0197 1.0019 

d7 2.5670 2.5178 

d8 0.9724 0.9523 

d9 0.0212 0.0184 

 

 

mgh007 

a9 95.1246 95.2190 

d1 0.0001 0.0001 

d2 0.0018 0.0018 

d3 0.0901 0.0870 

d4 0.9122 0.9260 

d5 2.1670 2.1364 

d6 2.3076 2.3362 

d7 0.1158 0.1026 

d8 0.1398 0.1604 

d9 0.1127 0.0984 

 

 

abp1 

a9 94.1528 94.1512 
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TABLE III. FREQUENCY CONTENTS OF DETAIL 

COEFFICIENTS 

 

required frequency components are available between d5 and 

d6 for abp1 signal. Frequency range of d6 & d7 for mgh007 

and d5 & d6 for abp1 is shown in table III. 

iii. Cross-correlation Analysis In addition to above two 

analyses, cross-correlation analysis of detail coefficients 

individually with the original ABP signal is also performed. 

The results of cross-correlation analysis of detail signals with 

ABP signal under test are given in table IV. It is observed that 

the value of cross-correlation coefficient increases for d1 to d7 

for mgh007and then decreases. In case of abp1 signal, the 

value of cross-correlation coefficient increases for d1 to d6 

and then decreases. This fact is observed while wavelet 

decomposition is followed using both sym4 and db4 wavelets 

in mgh007 and abp1 signals.   

From table IV, it is evident that d7 for mgh007 and d6 of 

abp1 are highly correlated with the original ABP signals in 

time domain. The results from the above mentioned three 

analyses show that d7 for mgh007 and d6 in abp1 signal 

carries maximum information in regard to the ABP signals 

under test. But practically, it is seen that selecting only a 

particular detail signal for ABP peak detection causes loss of 

some information and the detected peaks are not exactly 

recovered. Also, it is clear from table III that information 

below 0.8433 Hz is lost as seen from FFT of d7 signal when 

ABP signal from mgh007 record is decomposed using db4 

wavelet whereas d6 comprises of all required information 

using both sym4 and db4 wavelets for decomposition. Also, in 

case of abp1 signal from CSL database, d5 comprises of all 

relevant information in regard to frequency range of ABP 

signal whereas information above 2.896 Hz is missed in d6 

using sym4 wavelet and signal information above 2.943 Hz is 

missed in case of d6 signal using db4 wavelet. Also, selection 

of more detail signals requires more computation. Therefore, 

selection of d6 & d7 signals for mgh007 record and d5 & d6 

for abp1 signal are best suited for peak detection of ABP 

signal. 

d) Window based thresholding 

In soft thresholding, the selected detail coefficients below 

the predefined threshold are reduced to zero whereas the 

coefficients above the threshold tend toward zero. Hard 

thresholding method reduces the coefficients below the 

predefined threshold to zero whereas the coefficients above the 

threshold remain constant. Desmond B. Keenan [25] used hard 

thresholding method to remove high amplitude coefficients 

generated by ectopic beats from RR interval signals. Our 

method utilizes the hard thresholding method by selecting a 

particular threshold value from each signal segment. Pachauri 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. Representation of window based thresholding 

TABLE IV. CROSS-CORRELATION COEFFICIENTS 

 

etal [28] used this method for the peak detection of arterial 

blood pressure signal after transforming ABP signal into 

energy signal. 

The selected detail coefficients are used for peaks detection. 

For this purpose, a lower threshold is applied to the selected 

detail signals to remove unrelated peaks appearing due to 

noise. This method of thresholding leads to daptive 

thresholding. In this method of thresholding, the signal is 

segmented in to equal segments by defining a window of 

particular duration in terms of samples and a distinct value of 

threshold is selected from each segment of the signal. This 

type of thresholding strategy limits any large variation in the 

signal amplitude at a certain instant to a particular segment of 

the signal due to which the true peaks with lower amplitudes 

may be ignored in other segments if threshold is defined for 

the entire signal. 

Signal 
Detail 

Coefficients 

Frequency 

content (Hz) 

using  sym4 

Frequency 

content (Hz) 

using db4 

d6 0.6467-9.01 0.6967-8.997 
mgh007 

d7 0.3667 – 4.52 0.8433-4.567 

d5 0.6439-6.079 0.5789-6.131 
abp1 

d6 0.3147-2.896 0.2783-2.943 

Signal  Detail 

Coefficients  

Cross-

correlation  

coefficients 

using sym4 

Cross-

correlation  

Coefficients 

using db4 

d1  0.0012 0.0011 

d2  0.0042 0.0043 

d3  0.0215 0.0211 

d4  0.0871 0.0851 

d5  0.2171 0.2185 

d6  0.4371 0.4370 

d7  0.6930 0.6927 

d8  0.4253 0.4256 

 

 

mgh007 

d9  0.0465 0.0466 

d1 0.0039     0.0039     

d2  0.0157     0.0157     

d3  0.1106     0.1088     

d4  0.3522     0.3548 

d5  0.5427     0.5388     

d6  0.5599     0.5633     

d7 0.1249 0.1174 

d8  0.1361     0.1469     

 

 

abp1 

d9  0.1198     0.1123  
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e) Maxima Detection 

A new signal is generated by selecting the common points 

with positive amplitude values in both the selected detail 

signals after thresholding. In this newly generated signal, a 

maxima ‘d(i)’ is detected when the amplitude of previous and 

the succeeding are lower than the middle sample following 

condition (1) for maxima detection. It is possible that newly 

formed signal may comprise of two or more corresponding 

samples with same amplitude values because of the fact that 

pressure signals are more sinusoidal. So detection of maxima 

is difficult among three consecutive samples as mentioned 

above. In such cases, the algorithm looks for the third sample 

or next sample if it possesses lower amplitude following 

conditions (2) – (4). This process is repeated till a valid 

maxima is detected. 

Conditions for valid maxima detection 
)1()(&)1()()1( +〉−〉 ididididif

)()2(&)()]1(:)([&)1()()2( idididididididif 〈+=+−〉

)()3(&)(]2(:)([&)1()()3( idididididididif 〈+=+−〉

)()(&)()]1((:)([&)1()()4( idnididnididididif 〈+=−+−〉

 f) Peak Positions 

The numbers of detected maxima are assumed as possible 

systolic peaks and their positions in the original ABP signal 

are considered as possible systolic peaks positions. As no two 

consecutive beats can occur before 200 ms, an interval 

threshold of 200 ms is applied after detection of first peak in 

the signal that gives rise actual number of peaks and their 

positions in the ABP signal under test [29].  

B. Onset and Dicrotic Notch Detection 

After the detection of peaks of arterial blood pressure 

waveform, the delineator looks for the detection of remaining 

features such as onset, dicrotic notch and dicrotic peak in the 

ABP signal. For this purpose, average coefficient at first level 

is found suitable. The detected peaks positions serve as the 

reference for detection of remaining features of signal. As 

discussed earlier, wavelet decomposition of the signal using 

the selected wavelet at first level results in detail coefficient 

and average coefficient. The average coefficient obtained after 

wavelet analysis at first level is shown in figure 3 along with 

detail coefficients. This approximation coefficient comprises 

of entire information of ABP signal and the shape of ABP 

signal is also retained. The analysis of this average 

(approximation) coefficient has been found suitable for 

extracting the remaining features of ABP signal.   The onset 

positions of ABP waveform are determined after eliminating 

the redundant minima obtained from average coefficient after 

thresholding. For this purpose, detected peaks positions in the 

same ABP signal are taken into account. The average 

coefficient at first level undergoes window based amplitude 

thresholding by defining a window of 2 seconds. After 

thresholding, all the minima ‘a(i)’ in the signal are detected if 

the previous and subsequent sample in the signal have higher 

amplitude than the sample amplitude between them. 

Mathematically, the condition can be expressed as – 

)1()(&)1()( +<−< iaiaiaiaif  

where ‘a’ is the signal obtained after the approximation 

coefficient at first level undergoes window based threholding. 

Out of all these detected minima, only those minima are taken 

into account which appear after the detected peaks. If several 

minima are detected after the peaks positions, the minima with 

the minimum amplitude is registered as ABP onset.  

The detected peaks and onset positions in the ABP signal 

are now used to detect the dicrotic notch in ABP signal. The 

dicrotic notch is found between the peaks and onsets in the 

ABP signal. For this purpose, the algorithm looks for the 

minima between detected peaks and onset locations. If there 

are several minima found between a particular peak and onset, 

the delineator takes into account the minima with maximum 

amplitude and register the minima as dicrotic notch.  

B. Detection of Dicrotic Peak 

The dicrotic peak appears as a peak with weak amplitude 

between the dicrotic notch and onset of next ABP pulse. It is 

the result of reflected waves from the lower extremities and the 

aorta. For the detection of dicrotic peak, the delineator takes 

into account the detected onset and dicrotic notch positions. 

All the maxima in the average signal at first level are 

determined. The maxima with maximum amplitude appearing 

between dicrotic notch and onset of next ABP pulse are 

registered as dicrotic peaks.  

IV. RESULT AND VALIDATION 

The algorithm has been evaluated with respect to our 

manual annotations on one minute segments of twenty two 

signals from MGH/MF waveform database, first minute 

segments of fourteen signals of Fantasia database, first minute 

segments of fifteen signals of MIT-BIH polysmographic 

database and first fifty thousand samples of abp1 signal of 

CSL database. CSL database is chosen because of the fact that 

it comprises of expert annotations for both the ABP signals. 

This database consists of annotations from two experts and 

also annotations from author are available [14]. This type of 

openly available database can help the researchers to validate 

their algorithms but ABP signals only from two patients may 

not be sufficient to have different artifacts and 

pathophysiological complexity of ABP waveform. Secondly, 

expert annotations only for peaks of ABP signals are available 

for both the recordings in CSL database whereas annotations 

for other features are not reported. The remaining three 

databases have ABP signals along with synchronously sampled 

ECG recordings. ECG signals in these databases are annotated 

by experts but ABP signals are not annotated so far in any of 

these databases. For example, simultaneous recordings for 

ECG signals from three leads (lead I, lead II and lead V) and 

ABP signals along with other signals are available in 

MGH/MF waveform database for each record. Also the 

database comprise of the expert annotations for ECG 

recordings.  

ECG signals in MGH/MF database are available throughout 

the duration whereas pressure signals at certain extent are 

absent. Therefore same data segment of the ABP signal is 

selected for the analysis for which both ECG and ABP signals 

are available. The ECG waveform has been annotated on 

MGH/MF database by experts and annotation codes are 
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available in ecgcodec.h. The required codes for different beats 

are selected and number of beats in each ECG signal is 

determined for the duration when both ECG and ABP signals 

are available. 

It has been observed that any abnormality in ECG recording 

is also available in ABP waveform such as in case of 

premature contraction, QRS complex in ECG waveform is 

wider than other QRS complexes whereas same abnormality in 

ABP waveform is observed when systolic pressure falls after 

the occurrence of this beat [4]. Therefore, approved ECG 

annotations can help to evaluate the performance of the 

detector. This type of validation strategy is adopted by Zong 

etal [13] for validation of their algorithm for onsets of ABP 

waveform. However, it is observed practically that although 

recorded simultaneously, sometimes ECG annotations do not 

correspond to effective ABP waveforms and number of beats 

between both ABP and corresponding ECG differs as shown in 

table V and table VI respectively. There is 23 beats difference 

between manual annotations of ABP peaks and ECG 

annotations from MGH/MF database whereas both the 

waveforms are clear. Sometimes 2-3 beat difference is 

observed between manual annotations and ECG annotations 

for a particular record and sometimes there is no difference 

between number of beats both signals. Also, ECG annotations 

can only give the idea about the number of peaks in ABP 

waveform whereas positions of peaks are to be validated 

manually. ECG annotations from MGH/MF database along 

with our manual annotations for ABP peaks for similar 

duration of record mgh029 is shown in fig 6. The selected data 

segment has 99 ECG annotations whereas 98 manual 

annotations for ABP peaks are observed. This anomaly is also 

observed in fantasia and MIT-BIH polysmographic database 

signals as shown in table V and table VI respectively.  

Therefore the delineator performance is judged by manual 

annotations for all four database singals. We have chosen 

those signal segments in which all the four signal components 

could be validated manually. Out of first thirty five records of 

MGH/MF waveform database only twenty two records were 

found suitable for manually annotating all four signal 

components. Therefore, out of first thirty five signals of 

MGH/MF database, mgh001, mgh003, mgh004, mgh005, 

mgh011, mgh013, mgh017, mgh019, mgh020, mgh021, 

mgh022, mgh023 and mgh024 are not included in performance 

evaluation of the algorithm. The problem in manually 

annotating all the signal components in ABP signal is mainly 

with the dicrotic notch and dicrotic peak positions. In Fantasia 

database out of total twenty signals, only fourteen signals are 

found suitable for manual annotation. ABP signals from 

records f2o01, f2o02, f2o06, f2o07, f2y03 and f2y09 of 

Fantasia database are not included in our manual annotations. 

In f2o01, f2o02 and f2o06, dicrotic notch positions are clear 

but dicrotic peak positions could not validated manually. In 

f2o07 and f2y03, there are two dicrotic notches and two 

dicrotic peaks for each ABP cycle and it is difficult to 

establish which is actual dicrotic notch and dicrotic peak 

whereas in f2y09, both dicrotic notch and dicrotic peak 

positions are not clear. In Polysmographic database, out of 

total eighteen signals, three signals, slp37, slp48 and slp59 are 

not included in our manual annotations. In these signals also 

the dicrotic notch and dicrotic peaks positions are difficult to 

determine at various locations. Also in case of CSL database, 

all the four signal components were found in first fifty 

thousand samples in abp1 signal. Dicrotic notch and dicrotic 

peak positions could not be located manually in abp2 signal. 

Accuracy is the most important parameter to establish the 

overall performance of the detector. Accuracy (A) of the 

detector is given by the following relation [30] 

 )(1001 iii
Nb

Ne
A ×








−=  

Where ‘Ne’ and ‘Nb’ represent the total number of detection 

errors and annotations available in the file.  

In addition to accuracy, three other measures of detector’s 

performance i.e. sensitivity (Se), positive predictivity (PP) and 

error were also determined [26].  

The sensitivity (Se), positive predictivity (PP), and error 

[15] of detector is given by the following relation 

)(100 iv
FNTP
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+
=  

)(100 v
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vi
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error ×
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Where TP stands for the number of true positives, FN and 

FP denote the number of false negatives and the false 

positives. True positives are the beats those have been detected 

correctly. False positives are the beats which are detected as 

beats but actually do not exist. False negatives are the beats 

that are missed by the detector. The sensitivity depicts the 

percentage of true beats to overall beats those were correctly 

detected by the algorithm. The positive predictivity states the 

percentage of true beat detections to overall annotations. The 

detected four signal components for one signal each for all the 

four databases are shown in figure 7-10. Fig 8. Also shows M 

Aboy and expert 1 annotations for peaks along with detector 

annotations for the four signal components. Overall 

performance of the algorithm on all the four database signals 

using db4 and sym4 wavelet is summarized in table V and 

table VI respectively. It is clear from the table V and table VI 

that analysis with db4 wavelet results in more false detections 

for all the four components of ABP signal as compared to 

sym4 wavelet as a result reducing positive predictivity for 

MGH/MF and fantasia database signals. In terms of sensitivity, 

results by both the wavelets on both databases are comparable. 

On the contrary, performance of db4 wavelet is better on MIT-

BIH polysmographic database signal in comparison to sym4 

wavelet. for all four parameters of performance evaluation 

such as accuracy, sensitivity, positive predictivity and error 

analysis of the delineator. Performance of both the wavelets is 

similar on CSL database signals. 

V. CONCLUSION AND DISCUSSION 

An algorithm for delineation of arterial blood pressure 

waveform is proposed. The algorithm utilizes wavelet  
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Fig 6.  Manual annotations for ABP signal and ECG annotations from MGH/MF database for 

mgh029 record ((153601: 174500) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. Detected Peaks, onsets, dicrotic notch and dicrotic peaks in ABP signal of mgh007  

(266701:288300) record of MGH/MF waveform database 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8. Detected Peaks, onsets, dicrotic notch and dicrotic peaks in abp1 signal of CSL database 
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Fig 9. Detected Peaks, onsets, dicrotic notch and dicrotic peaks in ABP signal (first one minute segment (1:15000) 

samples) of f2y05 record of Fantasia database 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 10. Detected Peaks, onsets, dicrotic notch and dicrotic peaks in ABP signal (first one minute segment (1:50000) 

samples) of slp02am record of MIT-BIH Polysmographic database 

 

TABLE V. OVERALL PERFORMANCE OF THE DELINEATOR WITH Db4 WAVELET 

PK - Peaks, OS - Onsets, DN - Dicrotic notches, DP – Dicrotic Peaks 
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TABLE VI. OVERALL PERFORMANCE OF THE DELINEATOR WITH Sym4 WAVELET 

  

transform to decompose the signal under test at each scale. 

The algorithm is robust against physiological interferences and 

varying amplitudes of the signal on time scale. The 

performance of the algorithm is judged considering the signals  

from four databases. Implementation of wavelet based 

technique for feature extraction of ABP signals shows the 

capability of wavelet transform in biomedical signal 

processing. Wavelet based method has been used by Sahambi 

etal [29] for ECG feature extraction. So far most of the 

methods used for validation of pressure beat detection  

algorithms are based on properitary datasets those were 

acquired from experimental animals [31] and limited to few 

beats or patients only [32]. The assessment of beat detection 

algorithms on those proprietary databases is not possible. 

Validation of algorithm on the signals of open access 

MGH/MF waveform database, Fantasia database, MIT-BIH 

polysmographic database and CSL database opens a pathway 

to generalize the algorithm. Consequently, this may result to 

describe the cardiac functions more accurately while 

combining with ECG algorithms.  Assessment of the algorithm 

on ABP signals from different database with different subjects 

adds to the robustness of the method as signals on these 

databases encompass various artifacts, instrumental errors and 

physiological complexities. The proposed algorithm can be 

employed to detect myocardial ischemia, detection of 

premature ventricular contraction (PVC) and premature supra-

ventricular contraction (PSC) beats along with ECG signal to 

enhance the accuracy of disease identification. The proposed 

algorithm can also be employed for cardiac output monitoring 

[2], estimating pressure pulse index [3] and in the evaluation  

of arterial stiffness [6]. Also, use of ABP waveform analysis 

has been observed with ECG signal to reduce the false alarms 

 

in case of critical arrhythmias [9]. Our aim in this paper is 

mainly to check the performance of the algorithm with ABP 

signals of subjects of different age groups, sex that could 

combine the signals of various pathological complexities 

rather than a larger signal segment with one subject. Although 

the developed algorithm is applicable for the signals with long 

duration without any significant computation time yet 

performance evaluation with one minute segment is shown due 

to the problem of manually annotating the large signal 

segments. 
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